
 1 

GFD I, Final Exam Solutions 
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1.(a)  The expression for the pressure perturbation is found from the vertical momentum 

equation: 

Z-MOM wt = ! 1
!0
p 'z+ b  

which may be rearranged to give: 

p '
!0

= b!wt( )dz"  (*) 

Note that the first term in the integral gives the hydrostatic part of the pressure, while the 

second, !wt , may be thought of as the non-hydrostatic “correction” to the basic 

hydrostatic pressure.  We know from class that the wave solution is given by 

w = !!kU cos !( )  where the “phase” !  is given by ! = kx +mz !"t .  We also know 

from the last homework set that b = !N 2! sin !( ) .  One way to solve (*) is to express w  

in terms of b  using a time-derivative of the DENS equation, which gives: 

wt = !1 N 2( )btt .  Hence we may write (*) as 

p '
!0

= b+
btt
N 2

!
"#

$
%&
dz' = N

2!
m

1( ! 2

N 2

!
"#

$
%&
cos !( )   (**) 

which is the desired result. 

1.(b)  Here I am asking you to rewrite the answer above in terms of “external” 

parameters, like the flow speed and the topographic shape.  The dispersion relation for 

non-rotating waves is given by 

! 2 =U 2k 2 = N 2k 2

m2 + k 2
 

Where we have made use of the intrinsic frequency ! =Uk .  This may be solved for m , 

giving 
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m = !k 1! F
2

F 2
!
"#

$
%&

1/2

 

Where F ! Uk( ) N , and F <1 for wave solutions.  We have chosen the negative root to 

ensure that energy propagation is upwards, as discussed in class.  Substituting this 

expression for m  into (**) it is readily verified that 

p '
!0

= !N!U 1! F 2 cos !( )    (***) 

1.(c) As the flow speed increases, the wave frequency increases towards N : Uk! N  

and so F!1.  For this case (***) shows clearly that the perturbation pressure goes to 

zero. 

1.(d)  This is actually a difficult question to answer in a concise way.  The simplest might 

just be to say that (in Z-MOM) the size of the buoyancy term, b , is fixed by the 

topography and the stratification, whereas the vertical acceleration term increases with 

U , and so as U  increases the two will eventually become equal, and then there is no 

need for a perturbation pressure.  A more complete answer would look at the volume-

integrated momentum balance of a fluid parcel, dissecting how exactly the parcel mass 

times its vertical acceleration is balanced by two forces: (i) the acceleration of gravity 

times the mass of the parcel, and (ii) the net pressure pushing on the sides of the parcel. 

1.(e)  The form drag is given by: 

Force exerted on the fluid by the boundary
unit horizontal area

= ! p '
z=0

"zb
"x

x

= !0 N!U 1! F 2( ) !k( )cos2 k x !Ut( )#$ %&
x

= 1
2
!0N!

2Uk 1! F 2

 

Positive pressure perturbations are at places with negative topographic slope, meaning 

that the flow is pushing the topography to the left (negative x-direction).  Hence the 

topography must be pushing the flow to the right (positive x-direction).  This is consistent 

with the positive sign of the expression above.  As I mentioned in class, the issue of 

where in the fluid that change of momentum ends up is more complicated – in steady 

situations it is where the waves break. 
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2.(a)  In this problem everything is constant in the x-direction, so mass conservation 

reduces to vy = !wz .  Integrating this vertically through the bottom boundary layer we 

find: 

!
!y

vdz
0

! +

! = "
"y

Ekman transport in the y-direction( ) = ! w
z=! + ! w z=0( ) = !wE  

2.(b) Using the expression derived in class for the Ekman transport we find 

wE = ! A
f !

"U
"y

 

2.(c)  The hydrostatic pressure just above the boundary layer is given by 

pATM ! p
z=! + = !!0g H +! !! +( )  

and we may assume that the atmospheric pressure is zero (it could be any constant). 

2.(d)  The surface height field is given by ! =!0 cos ly( )  and we may allow the constant 

!0  to change slowly with time as the flow “spins-down.”  We assumed that the fluid 

velocity (above the boundary layer) was approximately in geostrophic balance with this 

surface height field, so that 

U = ! g
f
!y  

Thus the Ekman pumping velocity is given by 

wE = ! A
f !

"U
"y

= Ag
f 2!

"yy  

Now, when we evaluate the area integral to find out the pressure work, we are integrating 

over one wavelength in the y-direction, so any terms that just vary as a cosine will vanish.  

The term that remains will come from where we have the Ekman pumping velocity 

(which varies as cos ky( )  times the part of the pressure which also varies as cos ky( ) .  

This is given by 
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2.(e)  The above expression is negative, meaning that the pressure work is removing 

energy from the overlying volume.  This makes sense physically because energy is being 

dissipated by turbulence in the bottom boundary layer, and the source of energy for this is 

the KE and APE of the overlying flow.  The connection between the overlying flow and 

the bottom boundary layer is the pressure work. 

 

3.(a)  Call the lower layer number 2, and the upper layer number 1.  The potential density 

in the two layers is given by 

!1pot =
pref
R!1

= 105  N m-2

287 N m kg-1 K-1( ) 285 K( ) =1.2226 kg m-3

!2 pot =
pref
R!2

= 105  N m-2

287 N m kg-1 K-1( ) 275 K( ) =1.267 kg m-3

 

Note that the potential temperature increases from the lower layer to the upper layer.  

Thus the potential density jump is given by 

!! pot = !2 pot ! !1pot = 0.0445 kg m-3   

And the reduced gravity is 

g ' =
g!! pot
!2 pot

=
9.8 m s-2( ) 0.0445 kg m-3( )

1.267 kg m-3 = 0.344 m s-2  

3.(b)  The effective depth is given by 

Heff =
H1H2

H1 + H2

=
limH1!"

H2 = 800 m  
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3.(c)  The Kelvin wave speed will be to the north.  For the 1-layer waves we covered in 

class, that wave speed is gH , but because this is a 2-layer problem the speed will be 

given by 

c = g 'Heff = 0.344 m s-2( ) 800 m( )!
"

#
$

1/2
=16.6 m s-1  

3.(d)  The internal Rossby Radius of deformation (covered in Problem Set 4) is given by 

a ' = c
f 45° latitude( ) =

16.6 m s-1

2! 7.292!10-5 sin 45°( )  s-1 =161 km  

3.(e)  The maximum northward wind speed can be calculated from the 2-layer Y-MOM 

equation (with u = 0  because it is at the coastal boundary and ! = 0  because the upper 

layer is infinitely thick): 

!v2
!t

= "g ' !E
!y

 

The interface shape at the coast will be of the form E = E0 cos l y ! ct( )"# $%  with 

E0 = 400 m .  Thus it is easy to show that 

v2 =
g 'E0
c
cos l y ! ct( )"# $% = c

E0
H2

cos l y ! ct( )"# $%  

And this has a maximum northward windspeed (under peaks of the interface at the coast) 

of 

v2max = c
E0

H2

= c
2
= 8.3 m s-1  

 

 


